Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Cysteine-based redox regulation and signaling in plants.

Identifieur interne : 000774 ( Main/Exploration ); précédent : 000773; suivant : 000775

Cysteine-based redox regulation and signaling in plants.

Auteurs : Jérémy Couturier [France] ; Kamel Chibani ; Jean-Pierre Jacquot ; Nicolas Rouhier

Source :

RBID : pubmed:23641245

Abstract

Living organisms are subjected to oxidative stress conditions which are characterized by the production of reactive oxygen, nitrogen, and sulfur species. In plants as in other organisms, many of these compounds have a dual function as they damage different types of macromolecules but they also likely fulfil an important role as secondary messengers. Owing to the reactivity of their thiol groups, some protein cysteine residues are particularly prone to oxidation by these molecules. In the past years, besides their recognized catalytic and regulatory functions, the modification of cysteine thiol group was increasingly viewed as either protective or redox signaling mechanisms. The most physiologically relevant reversible redox post-translational modifications (PTMs) are disulfide bonds, sulfenic acids, S-glutathione adducts, S-nitrosothiols and to a lesser extent S-sulfenyl-amides, thiosulfinates and S-persulfides. These redox PTMs are mostly controlled by two oxidoreductase families, thioredoxins and glutaredoxins. This review focuses on recent advances highlighting the variety and physiological roles of these PTMs and the proteomic strategies used for their detection.

DOI: 10.3389/fpls.2013.00105
PubMed: 23641245
PubMed Central: PMC3638127


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Cysteine-based redox regulation and signaling in plants.</title>
<author>
<name sortKey="Couturier, Jeremy" sort="Couturier, Jeremy" uniqKey="Couturier J" first="Jérémy" last="Couturier">Jérémy Couturier</name>
<affiliation wicri:level="1">
<nlm:affiliation>UMR1136 Université de Lorraine-INRA, Interactions Arbres/Micro-organismes, IFR110, Faculté des Sciences Vandoeuvre, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>UMR1136 Université de Lorraine-INRA, Interactions Arbres/Micro-organismes, IFR110, Faculté des Sciences Vandoeuvre</wicri:regionArea>
<wicri:noRegion>Faculté des Sciences Vandoeuvre</wicri:noRegion>
<wicri:noRegion>Faculté des Sciences Vandoeuvre</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Chibani, Kamel" sort="Chibani, Kamel" uniqKey="Chibani K" first="Kamel" last="Chibani">Kamel Chibani</name>
</author>
<author>
<name sortKey="Jacquot, Jean Pierre" sort="Jacquot, Jean Pierre" uniqKey="Jacquot J" first="Jean-Pierre" last="Jacquot">Jean-Pierre Jacquot</name>
</author>
<author>
<name sortKey="Rouhier, Nicolas" sort="Rouhier, Nicolas" uniqKey="Rouhier N" first="Nicolas" last="Rouhier">Nicolas Rouhier</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:23641245</idno>
<idno type="pmid">23641245</idno>
<idno type="doi">10.3389/fpls.2013.00105</idno>
<idno type="pmc">PMC3638127</idno>
<idno type="wicri:Area/Main/Corpus">000740</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000740</idno>
<idno type="wicri:Area/Main/Curation">000740</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000740</idno>
<idno type="wicri:Area/Main/Exploration">000740</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Cysteine-based redox regulation and signaling in plants.</title>
<author>
<name sortKey="Couturier, Jeremy" sort="Couturier, Jeremy" uniqKey="Couturier J" first="Jérémy" last="Couturier">Jérémy Couturier</name>
<affiliation wicri:level="1">
<nlm:affiliation>UMR1136 Université de Lorraine-INRA, Interactions Arbres/Micro-organismes, IFR110, Faculté des Sciences Vandoeuvre, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>UMR1136 Université de Lorraine-INRA, Interactions Arbres/Micro-organismes, IFR110, Faculté des Sciences Vandoeuvre</wicri:regionArea>
<wicri:noRegion>Faculté des Sciences Vandoeuvre</wicri:noRegion>
<wicri:noRegion>Faculté des Sciences Vandoeuvre</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Chibani, Kamel" sort="Chibani, Kamel" uniqKey="Chibani K" first="Kamel" last="Chibani">Kamel Chibani</name>
</author>
<author>
<name sortKey="Jacquot, Jean Pierre" sort="Jacquot, Jean Pierre" uniqKey="Jacquot J" first="Jean-Pierre" last="Jacquot">Jean-Pierre Jacquot</name>
</author>
<author>
<name sortKey="Rouhier, Nicolas" sort="Rouhier, Nicolas" uniqKey="Rouhier N" first="Nicolas" last="Rouhier">Nicolas Rouhier</name>
</author>
</analytic>
<series>
<title level="j">Frontiers in plant science</title>
<idno type="ISSN">1664-462X</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Living organisms are subjected to oxidative stress conditions which are characterized by the production of reactive oxygen, nitrogen, and sulfur species. In plants as in other organisms, many of these compounds have a dual function as they damage different types of macromolecules but they also likely fulfil an important role as secondary messengers. Owing to the reactivity of their thiol groups, some protein cysteine residues are particularly prone to oxidation by these molecules. In the past years, besides their recognized catalytic and regulatory functions, the modification of cysteine thiol group was increasingly viewed as either protective or redox signaling mechanisms. The most physiologically relevant reversible redox post-translational modifications (PTMs) are disulfide bonds, sulfenic acids, S-glutathione adducts, S-nitrosothiols and to a lesser extent S-sulfenyl-amides, thiosulfinates and S-persulfides. These redox PTMs are mostly controlled by two oxidoreductase families, thioredoxins and glutaredoxins. This review focuses on recent advances highlighting the variety and physiological roles of these PTMs and the proteomic strategies used for their detection.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">23641245</PMID>
<DateCompleted>
<Year>2013</Year>
<Month>05</Month>
<Day>06</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1664-462X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>4</Volume>
<PubDate>
<Year>2013</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in plant science</Title>
<ISOAbbreviation>Front Plant Sci</ISOAbbreviation>
</Journal>
<ArticleTitle>Cysteine-based redox regulation and signaling in plants.</ArticleTitle>
<Pagination>
<MedlinePgn>105</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fpls.2013.00105</ELocationID>
<Abstract>
<AbstractText>Living organisms are subjected to oxidative stress conditions which are characterized by the production of reactive oxygen, nitrogen, and sulfur species. In plants as in other organisms, many of these compounds have a dual function as they damage different types of macromolecules but they also likely fulfil an important role as secondary messengers. Owing to the reactivity of their thiol groups, some protein cysteine residues are particularly prone to oxidation by these molecules. In the past years, besides their recognized catalytic and regulatory functions, the modification of cysteine thiol group was increasingly viewed as either protective or redox signaling mechanisms. The most physiologically relevant reversible redox post-translational modifications (PTMs) are disulfide bonds, sulfenic acids, S-glutathione adducts, S-nitrosothiols and to a lesser extent S-sulfenyl-amides, thiosulfinates and S-persulfides. These redox PTMs are mostly controlled by two oxidoreductase families, thioredoxins and glutaredoxins. This review focuses on recent advances highlighting the variety and physiological roles of these PTMs and the proteomic strategies used for their detection.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Couturier</LastName>
<ForeName>Jérémy</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>UMR1136 Université de Lorraine-INRA, Interactions Arbres/Micro-organismes, IFR110, Faculté des Sciences Vandoeuvre, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chibani</LastName>
<ForeName>Kamel</ForeName>
<Initials>K</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Jacquot</LastName>
<ForeName>Jean-Pierre</ForeName>
<Initials>JP</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Rouhier</LastName>
<ForeName>Nicolas</ForeName>
<Initials>N</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>04</Month>
<Day>29</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Plant Sci</MedlineTA>
<NlmUniqueID>101568200</NlmUniqueID>
<ISSNLinking>1664-462X</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">cysteine</Keyword>
<Keyword MajorTopicYN="N">disulfide bond</Keyword>
<Keyword MajorTopicYN="N">glutathionylation</Keyword>
<Keyword MajorTopicYN="N">nitrosylation</Keyword>
<Keyword MajorTopicYN="N">redox regulation</Keyword>
<Keyword MajorTopicYN="N">sulfenic acid</Keyword>
<Keyword MajorTopicYN="N">thiolate</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>03</Month>
<Day>05</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2013</Year>
<Month>04</Month>
<Day>05</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>5</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>5</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>5</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23641245</ArticleId>
<ArticleId IdType="doi">10.3389/fpls.2013.00105</ArticleId>
<ArticleId IdType="pmc">PMC3638127</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Biochem J. 2012 Aug 1;445(3):337-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22607208</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2009 Mar;2(2):218-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19825609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Signal. 2009 Nov 10;2(96):ra72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19903941</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Chem Biol. 2008 Dec;12(6):746-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18804173</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci STKE. 2001 Jun 12;2001(86):pl1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11752655</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2012 Jan 13;45(1):13-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22244329</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Chem Biol. 2011 Feb;15(1):32-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21036657</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Oct 30;425(6961):980-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14586471</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Chem Biol. 2011 Feb;15(1):88-102</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21130680</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2007 Oct;8(10):813-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17848967</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2012 Aug;85(4):734-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22715852</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2011 Jun;16(6):300-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21482172</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Chem Biol. 2005 Aug;1(3):154-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16408020</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2007;58:459-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17288534</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Apr 10;98(8):4794-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11274350</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2010 Sep 7;49(35):7709-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20698499</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Oct 19;282(42):30667-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17720813</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2012 Sep;236(3):887-900</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22767201</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2008 Mar;20(3):786-802</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18326829</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Proteome Res. 2008 Dec;7(12):5270-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19367707</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2011 Jul 15;51(2):314-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21605662</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2008;476:165-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19157016</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2010 Aug;22(8):2894-907</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20716698</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Aug 15;283(33):22371-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18552404</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Jan 12;282(2):1183-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17105724</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Proteomics. 2009 Apr 13;72(3):452-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19135183</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Jun 17;105(24):8197-202</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18287020</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1994 Nov 4;269(44):27670-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7961686</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Photosynth Res. 2010 Apr;104(1):75-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19902380</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Proteomics. 2012 Feb;11(2):M111.014142</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22122882</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2010 Mar;61(5):1509-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20176891</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2012 Nov 16;13(11):15193-208</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23203119</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 May 31;102(22):8054-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15911759</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2008 Aug 15;321(5891):952-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18635760</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2008 May 23;320(5879):1050-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18497292</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 Aug 28;284(35):23364-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19561357</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Aug 29;283(35):23846-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18579529</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2012 Sep 1;53(5):1101-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22750205</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2012 Jul 11;13(8):499-507</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22781905</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 Apr 25;300(5619):650-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12714747</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2013 Sep;36(9):1607-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23347018</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2002 Nov;130(3):1309-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12427997</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 Feb;49(3):505-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17217469</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Feb;155(2):944-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21139087</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Life Sci. 2012 Oct;69(19):3245-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22842779</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2003 Jun 27;113(7):935-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12837250</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2010 Dec 9;468(7325):790-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21085121</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Oct 20;281(42):31736-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16916801</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Amino Acids. 2011 Jun;41(1):43-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20135153</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2012 Aug;15(4):424-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22464350</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2008;59:21-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18031216</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Signal. 2011 Dec 13;4(203):ra86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22169477</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2006;57(8):1777-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16714306</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Signal. 2012 Mar 13;5(215):pe10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22416275</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2012 Dec 31;3:295</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23293647</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Res. 2006 Jul 1;66(13):6800-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16818657</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>France</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Chibani, Kamel" sort="Chibani, Kamel" uniqKey="Chibani K" first="Kamel" last="Chibani">Kamel Chibani</name>
<name sortKey="Jacquot, Jean Pierre" sort="Jacquot, Jean Pierre" uniqKey="Jacquot J" first="Jean-Pierre" last="Jacquot">Jean-Pierre Jacquot</name>
<name sortKey="Rouhier, Nicolas" sort="Rouhier, Nicolas" uniqKey="Rouhier N" first="Nicolas" last="Rouhier">Nicolas Rouhier</name>
</noCountry>
<country name="France">
<noRegion>
<name sortKey="Couturier, Jeremy" sort="Couturier, Jeremy" uniqKey="Couturier J" first="Jérémy" last="Couturier">Jérémy Couturier</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000774 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000774 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:23641245
   |texte=   Cysteine-based redox regulation and signaling in plants.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:23641245" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020